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LE’ITER TO THE EDITOR 

Self similarity and correlations in percolation 

Aharon Kapitulnik, Amnon Aharony, Guy Deutschert and Dietrich 
StaufferS 
Department of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel 

Received 22 March 1983 

Abstract. The infinite cluster above the percolation threshold is shown by a scaling theory 
and Monte Carlo simulations to be homogeneous on large length scales (compared with 
the correlation length). On shorter length scales this cluster is self similar, and its measured 
fractal dimensionality agrees excellently with the scaling law D = d - @/v. The exponents 
0 and Y are also measured, both from the crossover between the two length scale regions 
and from correlations near the boundaries. 

Much of the current interest in the properties of dilute systems concentrates on their 
geometrical structure in the vicinity of the percolation threshold, p c  (Stauffer 1979, 
Kirkpatrick 1979, Gefen et a1 1981, Kapitulnik and Deutscher 1982). Studying the 
geometry is clearly the first step towards understanding physical properties such as 
long-range magnetic order or conductivity. Particular interest has been centred on 
the resistivity, superconducting transition temperature, critical magnetic fields and 
critical currents of granular materials (Deutscher 1981, Kapitulnik and Deutscher 
1982). All of these properties depend on the structure of the infinite cluster, which 
exists for concentrations p > p c .  The probability to belong to this cluster is written as 
P,(p)a (p -pC)’, and the correlation length is (a Ip -pCI-’ (Stauffer 1979). On length 
scales which are large compared with 6, the infinite cluster is believed to fill up the 
space homogeneously. On smaller scales, the correlations create fluctuations in the 
density. Early descriptions of the backbone of the infinite cluster used the ‘links and 
nodes’ model (Skal and Shklovskii 1974, de Gennes 1976), in which quasilinear long 
links connect nodes which are separated by a distance 6. However, this description 
does not agree with simultaneous resistivity and superconducting critical current 
measurements (Deutscher 198 1) nor with Monte Carlo simulations (Kirkpatrick 1979) 
or with electron microscope pictures of granular superconductors (Kapitulnik and 
Deutscher 1982), both of which exhibit self similar features on length scales L in the 
range a << L << ( (a is the microscopic lattice distance). The real pictures contain nodes 
on all of these length scales$. 

Self similarity is intimately associated with the notion of fractal dimensionality 
(Mandelbrot 1977). There have been various attempts to identify the fractal 
dimensionality for the percolation problem by looking at various measures of the size 
of the largest f inife  cluster at and below p c  within a finite size volume (Leath and 

t Oren Family Chair of Experimental Solid State Physics. 
f Permanently at Institut fur Theoretische Physik, Universitat zu Koln, 5000 Cologne 41, West Germany. 
6 More advanced models replace the linear links by complex fractal structures, which make them self similar 
on length scales U << L << .$ (Coniglio 1981). 
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Reich 1978, Forrest and Witten 1979, Stauffer 1980). It is not clear if any of these 
relates to the geometry of the infinite cluster. Moreover, there exists no explicit 
quantitative verification of the fractal nature of this cluster. The aim of the present 
letter is to report on such a quantitative study. 

In contrast to the various finite-size scaling arguments, we follow the geometrical 
procedure suggested by Mandelbrot (1977). Given a point on the infinite cluster, 
consider the number M ( L )  of points on the same cluster within a volume L d  (of linear 
size L )  centred at that point. Self similarity implies that this number scales as 

M ( L )  = LD, a << L K 5, (1) 

where D is the fractal dimensionality (Mandelbrot 1977, 1982). In what follows we 
use both scaling theory and Monte Carlo simulations to confirm that (Kirkpatrick 
1979) for d < 6: 

D = d - P / v .  (2) 

Another serious drawback of the earlier finite-size Monte Carlo calculationsf has 
to do with boundary effects: at p c  these effects propagate throughout the sample, and 
cannot be separated from the self-similar region which one wants to study. In this 
letter we report on new Monte Carlo simulations at p > p c .  Since P&) grows very 
quickly with p ,  it is clear that the largest cluster within any finite sample is a part of 
the true infinite cluster. Moreover, since 6 is finite, we were able to separate the 
self-similar behaviour, occurring for a << L << 5, from the effects of the boundaries. 
The latter were then used to obtain further information on the correlations. Both 
the measurement of M ( L )  and that of the boundary effects are based on the notion 
that a local perturbation creates correlations which decay as power laws up to a distance 
of order 6. Our methods provide independent measurements of D, v and p (on the 
same family of samples), and thus a direct confirmation of (2). 

We studied two-dimensional (d  = 2) Monte Carlo simulations of site percolation, 
with p > p c  = 0.5927. For each desired value of p we generated 5000 samples, of size 
187 x 187, and kept only those (typically more than 300) whose actual concentration 
was within 0.05% of p .  (Without this selection, the variation is of order 0.6%, and 
the crossover effects described below become smeared.) We next identified the largest 
cluster on each of the remaining samples, picked only those samples in which the 
central site belonged to this cluster, and counted the sites connected to it within 
squares of size L around it, M ( L ) .  Averaging over these samples (whose number was 
of order 100-200), we found the average density p ( L )  = M ( L ) / L * .  Typical plots of 
In p ( L )  against In L,  at p - p c  = 0.035 and 0.022, are shown in figure 1. Similar data 
were also found at other concentrations. 

All the figures exhibit three distinct regions: the data in region I indicate a power 
law behaviour, p ( L )  a L2-D, with D = 1.900* 0.009. (The error reflects the range of 
slopes on the log-log curve. Note that the actual slope, d -D,  is small.) The density 
in region I1 is practically independent of L,  which we identify below as P , ( p ) .  This 
function, shown in figure 2, is excellently described by ( p  -pC)’,  with P = 0.140 * 0.007 
(the errors in P, reflect the range of plateau levels). Extrapolation of the lines 
~ ( L ) c c L ~ - ~  and p(L)aP,(p)  yields the crossover point, which we identify as L = 6. 

t Above six dimensions this expression breaks (Kapitulnik et al 1983). 
$ Many of the results are summarised by Stauffer (1980). See also Leath and Reich (1978) and Pike and 
Stanley (1981). 
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From figure 2 we see that [ ~ ( p  -p , ) -” ,  with Y = 1.33 k0.08. These values of p and 
Y are in excellent agreement with earlier ones. Our measured values of D, 8 and Y 
clearly satisfy (2). Region I11 represents the boundary effects, to be discussed below. 

In order to interpret figure 1, consider the conditional probability p(r) that a point 
at a distance r from the origin (which belongs to the infinite cluster) will also belong 
to the infinite cluster. If scaling holds, then (for r >>a) the only relevant length is 6, 
and we expect the scaling form (Stauffer 1978) 

p(r)  = Pm(p)f(r/t). (3) 
The prefactor, Pm(p), represents the expectation that the two sites (at r and at the 
origin) are uncorrelated for r >>(, when we expect that p ( r )  + P m ( p ) ,  i.e. that f ( x )  
approaches a constant as x + 00. For r << 5 we expect p ( r )  to be independent of 6. 
This can be achieved only if f ( x )  - x -”’ for x << 1, We thus predict that p (t) cc r-”” 
for r << 5. The ‘mass’ M ( L )  is found via M ( L )  = j,“ ddrp(r), and one easily checks that 
M ( L )  cc Ld-@’” for L < 5, yielding (1) and (2). For larger scales, L > 6, we find M ( L )  oc 
(L/&)d[d-8’“. The average density p(L)  is thus found to behave as L-*’” for L < & 
and as P,(p)cc[-’/’  for L>[.  Note that for L < t  one has p(L)ccp(L). This can 
hold only if the infinite cluster is highly correlated, containing ‘holes’ at all length 
scales, in contrast to the naive models of Skal and Shklovskii (1974) and de Gennes 
(1976). 

Except for the boundary effects, this behaviour is exactly the one observed in 
figure 1: the slope in region I should be -P/v, the crossover point between I and I1 
should be at L -6, and the constant density in region I1 should be P, (p ) .  The fact 
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Figure 2. Concentration dependence of P, and 6, extracted from the p ( L )  plots. 

that region I1 is reached before the boundary effects are felt ensures that the power 
law behaviour P(L)ccL-~’” in region I is indeed an intrinsic property of the infinite 
cluster for L <(. 

It is interesting to note that all our p(L)  plots exhibit ‘oscillations’ about the straight 
L-”“ line (figure 1). We argue that they reflect the fluctuations in the size distribution 
of the ‘holes’, i.e. the lacunarity (Mandelbrot 1977) of the largest clusters in our 
specific finite simulations. A measurement in the vicinity of a big ‘hole’ will clearly 
yield a reduced value of p(L)  for L smaller than the size of the hole. This effect is 
clearly exhibited in figure 3, where we present the result of our measurements on the 
Sierpinski gasket (shown in the insert). The random version of this fractal was 
suggested as a model for the backbone of the infinite cluster (Kirkpatrick 1979, Gefen 
et a1 1981). One clearly observes ‘jumps’ in p(L)  at the sizes of the ‘holes’, L = 8, 
16, 32, 64, 128. We expect such oscillations to appear whenever the average is taken 
over a finite number of samples, and to decay as this number is increased. 

Finally, we discuss region 111. The decrease in p(L)  as L approaches the size of 
the sample, R, results from the fact that our analysis throws away ‘finite’ clusters near 
the boundary, which might be connected to our infinite cluster via bonds which are 
outside our sample (we use ‘free’ boundary conditions). The effect of these is expected 
to propagate into the sample, down to (R -L )  of order 6. 

If we fix some Lo, with R -Lo=O(a) ,  we expect the function g(Lo-L)= 
[Pm-p(L)]/[Pm-b(Lo)] to decay to zero for (Lo-L)>>t. This decay is expected to 
behave as g(x)=e-’/‘ for finite 6, and as g(x)CCx-B/” for &+a (see equation (3)). 
We plotted g ( r )  against r at p - p c  = 0.005 (see figure 4) and p - p c  = 0.01, and found 
a very clear power law behaviour, with p/v = 0.105*0.006, in agreement with our 
other results. At higher concentrations we fitted g(x) to e-””, extracting values for 
both 6 and P, at each concentration. Logarithmic plots of 6 and Pm against ( p  - p c )  
now yielded 6 = (0.85 *0.4)(p -pc)1,3*0.1 and p = 0.145 kO.01 consistent with our 
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Figure 3. Density p(L)  for the Sierpinski gasket (shown in the insert). D = log(3)/log(2), 
shown by the straight line. 
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Figure 4. Dependence of density on distance from boundary, for p - p c  = 0.005; Lo = 0. 

other measurements. The boundary effects may thus be used to obtain additional 
independent determinations of p/v, p and v. 

In conclusion, we have given direct proof that the infinite cluster is self similar for 
scales a << L << 6, confirmed that its fractal dimensionality is given by (2), and shown 
that it is homogeneous on scales L >> 6. 
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